Comprehensive model evaluation toolkit with 3 specialized nodes for assessing classification and regression model performance using industry-standard metrics.
Detailed documentation for each evaluation node available in Bioshift.
Create confusion matrix for classification model evaluation
True target values
Predicted target values
Class labels (optional)
Confusion matrix array
Visual confusion matrix
Basic metrics from matrix
Generate detailed classification performance report
True target values
Predicted target values
Class names (optional)
Detailed metrics report
Visual report representation
Overall performance metrics
Calculate regression performance metrics
True target values
Predicted target values
Comprehensive metrics report
Residuals vs predictions plot
Key metrics summary
Common model evaluation workflows using these specialized metric nodes.
Complete evaluation pipeline for classification models
Comprehensive evaluation of regression model performance
Compare multiple models using standardized metrics
Comprehensive evaluation framework covering all major machine learning model types.